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ABSTRACT
This paper describes a new method of sensor failure
detection, isolation, and accommodation using a neural
network approach. In a propulsion system such as the
Space Shuttle Main Engine, the dynamics are usually
very complicated and sometimes not well known.
However, the number of variables measured is usually
much higher than the order of the system. This built-in
redundancy of the sensors can be utilized to detect and
correct sensor failure problems. The goal of the
proposed scheme is to train a neural network to identify
the sensor whose measurement is not consistent with
other sensor outputs. Another neural network is trained
to recover the value of critical variables when their
measurements fail. Techniques for training the network
with a limited amount of data are developed. The
proposed scheme is tested using the simulated data of
the Space Shuttle Main Engine (SSME) inflight sensor
group.

INTRODUCTION
In 1980, a ground test of the Space Shuttle Main

Engine (SSME) experienced an erroneous measurement
of the Main Combustion Chamber pressure (Pc) [1]. Pc
is used for the closed loop thrust level control as well
as closed loop mixture ratio calculations. The failed
sensor reading led the testing to a severely abnormal
operating condition. An internal fire and subsequent
explosion occurred as a result of the sensor failure.
The engine was virtually destroyed. Also, during the
course of the Space Shuttle program there have been
numerous incidents of sensor failures which caused
component damage, unnecessary shutdowns and delays
of the program.

In order to improve the operational reliability it is
necessary to validate the measured sensor data, isolate
any failed sensor and recover the failed critical
measurement. There has been an extended effort in
applying analytical redundancy to the sensor failure
detection and isolation in the jet engine failure

diagnosis problem [2]. In general, this approach
utilizes the engine model and the Kalman Filter to
detect and isolate sensor failures. This technique is
strongly dependent upon a reliable system model which
may not always be attainable in a complex system.

This paper proposes that neural networks be trained
by experimental data and learn the relationships among
the redundant sensors. These networks are then used to
check the validity of the sensor readings and provide an
estimated value for failed sensors. This paper will first
describe some of the system dynamics of the Space
Shuttle Main Engine. The selection and the training
algorithms of the neural networks are then presented,
followed by the simulation results of the proposed
approach. Finally, a discussion of the research is
presented.

The SSME DYNAMICS
The Space Shuttle Main Engine under study is by

far the most complicated and power intense machine
among propulsion engines. A simplified description of
the system operation follows [3,4]. There are three
main engines in a space shuttle orbiter. Each engine
produces a sea level thrust of 375,000 lb and a vacuum
thrust of 470,000 lb. A schematic diagram of the
propellant flows is shown in Fig. 1. Pressurized fuel,
provided by the fuel tank, flowing through the low
pressure fuel pump and the high pressure fuel pump, is
fed to the regenerative cooling and the prebumers. A
pressurized oxidizer tank provides the oxidizer which
flows through the low pressure oxidizer pump and the
high pressure oxidizer pump where the output flow
splits into the two prebumers and the main combustion
chamber as shown in Fig. 1.

The dynamics of the system operation include: (1)
the performance of turbopumps; (2) the heat exchange
of the cooling flows: (3) the combustion of the two
prebumers and the main chamber; (4) the control valve
actions; and (5) the energy properties of oxygen and
hydrogen in different phases. Most of these dynamic
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Figure 1. SSME Propellant Flow Schematic

properties are based on empirical data
and are highly nonlinear. For example,
a hydrogen energy property table has to
be used to calculate the relationships
among the internal specific energy, the
pressure, the temperature, and the
density at a given state. In order to
demonstrate the complexity of the
system, the dynamics of a typical hot
gas turbine, which represents only a
small portion of the whole SSME
system, is shown here. Given upstream
pressure Pu, the upstream temperature
Tu, the downstream pressure P°, the gas
constant R, the specific heat constant
CP , the rotational speed S, the specific
heat ratio y, the flowrate DW and the
empirically determined turbine
performance map f,,( •) in Figure 2,
the available torque T and downstream
temperature Td can be calculated by
following equations [3].
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From the dynamics described above it can be seen
that there exist certain defined relationships among
these measured variables, although these relationships
may be complicated. Further analysis reveals that
analytical redundancy does exist, i.e. an unknown
variable can be estimated using other related variables.
However, with four turbopumps and three combustors
operating simultaneously, it is extremely difficult to
design a Kalman Filter type estimator for any selected
measurement without grossly simplifying the dynamics.

SSME SENSOR GROUPS
There are hundreds of sensors used to collect on-

line operational data. However, only 21 of them are
used for inflight control/ shutdown purposes. These
sensors include: speed sensors for three of the

turbopumps; a fuel flowmeter; a pressure sensor for the
main combustion chamber (MCC); pressure and

0
Figure 2. Hot Gas Turbine Performance Map

temperature sensors for the cooling ducts; and pressure
and temperature sensors for the selected pump and
turbine inlet and discharge points. Among these
sensors only MCC pressure, high pressure fuel pump
(HPFP) inlet flow, HPFP inlet pressure and HPFP inlet
temperature are used for controlling the engine
performance. The rest of the inflight sensors are used
to monitor the operating condition and to activate the
engine shutdown when the red-line condition is
detected.

In order to simplify the problem, the scope of this
study is limited to the sensor failure detection during
the nominal operating condition. The study can be
easily extended to detect sensor failures for abnormal
operating conditions if data for these conditions is
obtained. Also, only the single sensor failure problem
is addressed because we assume that the simultaneous

T
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sensor failure situation is not likely to occur and
consecutive sensor failures can be handled by cascading
single sensor failures.

From the analysis of the dynamic relationships of
these selected measurements, an "influence sensor map"
can be constructed. This "influence sensor map" is the
simplified description of how a measurement can be
directly influenced by other measurements. Again, this
relationship may be complicated and not intuitive even
to an expert. Among the SSME sensors, there are two
closely related measurement clusters, one for the fuel
system and one for the oxidizer system. Figure 3
shows the "influence sensor map" for the fuel system.
This cluster of measurements will be used to study the
sensor failure detection and signal reconstruction using
network computing. The sensors selected here are:

P6:	 Main Combustion Cooling Pressure
T6:	 Main Combustion Cooling Temperature
Qfd 1: Low Pr. Fuel Pump outlet flow, in volume
Pfd 1: Low Pr. Fuel Pump outlet Pressure
Tfdl: Low Pr. Fuel Pump outlet Temperature
Pfd2: High Pr. Fuel Pump exit Pressure
Tft2d: High Pr. Fuel Turbine Downstream Pressure
Sfl:	 Low Pr. Fuel Turbopump Speed
Sf2:	 High Pr. Fuel Turbopump Speed
Pc:	 Main Combustion Chamber Pressure

The sensor failure detection and signal
reconstruction problem can be restated as:

For a given set of measurements at any time
instant:

1. identify the measurement which is not consistent
with others

2. estimate the value for the identified failed sensor.

NEURAL NETWORK SELECTION
The neural network structure selected for this task

is a multilayer feedforward network with the sigmoidal
activation function for each node (Figure 4) [5]. There
are two networks to be trained for the two described
functions: failure detection and lost variable estimation.
The first network is to detect inconsistent sensor
readings. The neural network useo in this simulation
consists of 10 input nodes, 30 first hidden layer nodes,
30 second hidden layer nodes, and 10 output nodes.
The normalized sensor values are applied to the input
nodes. The 10 output nodes on the final layer represent
the confidence levels of the 10 corresponding sensor

readings. The functional requirement of this network is
to process a given set of normalized sensor
measurements and generate a list of confidence
indicators for the sensor readings. For example, for a
good set of sensor readings, the output of this neural

Qfd1

P6 	 Pfd 1-^
Sf1 

T

Pc

Pf
T6

Tft2d i	 _ 
Sf2No

Figure 3. Influnce Sensor Map of SSME Fuel System
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Figure 4. Feedforward Neural Network Architecture

network is expected to have high confidence indicators
(values close to 1) for all sensors. If there is a sensor
failure, this network's output shall be an indication of
the low confidence (a value close to 0) in the failed
sensor while indicating high confidences in other
sensors.

The second neural network is to perform the
recovery of the measurement due to the failed sensor.
In this particular example, the network will use the
other nine measurements to estimate the collapsed
sensor reading identified by the previous network. The
network selected here also has two hidden layers. The
network chosen for the simulation consists of 9 input
nodes, 30 first hidden layer nodes, 30 second hidden
layer nodes, and a single output node for the sensor

variable to be recovered. Usually, only the sensor
readings that are used in the control loop need to be
recovered.
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TRAINING THE NETWORKS
In this study, the Digital Transient Model [3] is

used to simulate the dynamic behavior of the system.
During start up, the main engine power level reaches
100 percent power within 4 seconds. Since this
transient curve covers a very wide range of operation,
it is assumed that the information gathered during this
time period is rich enough to train the neural networks
for both sensor failure detection and failed sensor
recovery. Only data from a normal operation is used
in this study. Also, the data for the first second of
engine operation are discarded because most of the
measurements stay constant during that time period.
The data samples are recorded at the rate of 50 Hz. In
total, there are 150 sets (3 seconds) of sensor readings
available for the neural network training.

A. Training for Sensor Failure Detection
As previously described, the purpose of this network

is to single out the sensor reading which is not
consistent with the other measurements. For a given set
of sensor readings we can establish a range for each
sensor which we consider "normal". These ranges can
usually be established by combining the experts'
knowledge about the process, the sensor characteristics,
and the historical data base. Once the range of each
measurement is selected, the goal states of the output
nodes can easily be determined according to whether
the measurement is within the range or not. A back-
propagation algorithm is used here to train the neural
network. The randomized iteration sequence is
described as follows:
(1) randomly select one of the 150 sets of sensor

readings,
(2) randomly select one of the 10 sensors to be trained,
(3) generate a random Gausian noise co with zero mean

and standard deviation a = 1.5 e, where te, is the
valid range for the ith sensor reading S i . Add the
noise w to S, to create a new sensor reading Si*.
This selection of noise generates about 50% out-of-
range training samples.

(4) if S i * is within the valid range of S i then set the
desired output O, of the neural network to 0.9,
otherwise set it to 0.1, also set all other desired
outputs to 0.9,

(5) adjust the weights according to the back-
propagation algorithm,

(6) repeat steps (1) to (5) until the network can reliably
indicate the failed sensor for any given situation.

B. Training for Failed Sensor Recovery
When a critical sensor reading is found to be false,

it is necessary to estimate its value using other

correlated measurements. A simple approach is to have
one estimation network for each failed sensor that needs
to be recovered. This network will have n-1 input
nodes and 1 output node. Given the normal operation
data set, the training is straight forward. The
performance of the trained network is usually excellent.
The training algorithm for the estimation of ith sensor
is:
(1) randomly select one of the 150 sets of sensor

readings,
(2) apply the other 9 sensor inputs to the network,
(3) calculate the error E; = (Si - Oi) for the back-

propagation training,
(4) adjust the weights of the network according to the

back-propagation algorithm,
(5) repeat steps (1) to (4) until the result of the

estimation is acceptable.
Due to the redundancy of these selected sensors, it

is expected that there is a certain degree of similarity in
the estimation networks for different sensors. Thus, it
may be much more efficient to have one estimation
network that can estimate any selected missing variable.
A single network to recover all variables in the SSME
fuel system will have 10 input nodes and 10 output
nodes. The training algorithm is more complicated and
the performance is not as good as a single sensor
estimator. Here, we limit our scope to the single
estimator only.

SIMULATION RESULTS
As described in the previous section, the data

generated by the Digital Transient Model (DTM) is
used in the simulation. Initially, the data collected
during the start up transient (i.e. 1.0 S Time < 4.0
seconds) are used to train the neural networks. The
first network is trained to capture the relationship
among the measurements so that a failed sensor can be
identified. Variable step size for the weight
adjustments is used to help fine tune the network for
better performance. Figure 5 shows the percentage of
error during the training of the network. The error
percentage is calculated for every 2,500 training
iterations. It can be seen that the network is able to
reach more than 90% accuracy in predicting any given
sensor failure after about one million samples. Further
fine tuning has reduced the error to less than 5%.
These errors occur in the neighborhood of the defined
cutoff values of valid sensor readings. Because of the
continuous nature of the selected network it is
reasonable to have a gray area which indicates that the
sensor failure is "uncertain". A second network which
is to recover the Main Combustion Chamber Pressure
measurement is also trained using the start up transient
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data. The input to this network consists of the signals
from the other 9 sensors and its only output is the
estimation of MCC pressure. The training is
straightforward and the estimation results are within a
few percent after several thousand iterations.

These two networks were tested for an extended run
of the DTM simulation. In this simulation, the
controller starts the engine, powers the engine to 100%
in four seconds, holds at 100% for one second, reduces
the engine power to 65% in the next five seconds, holds
at 65% for three more seconds, and finally gradually
increases the power to 100%. This is to emulate the
operation profile of the SSME during the so-called
"Max-Q Throttle" operation.
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Case 1: HPFTP Speed Sensor Failure at T = 7.0
Figure 6 shows the case that the High Pressure Fuel

Turbopump speed sensor Sf2 starts failing at T = 7.0.
The failure is a soft failure, i.e. a degraded reading.
The rate of failure is -350 RPM per second off the
actual value. It can be seen that the confidence
checking network is able to detect the discrepancy
within 0.5 seconds by indicating the confidence of that
sensor is low (close to 0). Figure 7 shows the outputs
of the network during the Sf2 sensor failure. It shows
that the failed sensor can be clearly identified within a
very short period of time after it started degrading.

Case 2: MCC Pressure Sensor Failure at T = 8.0
Figures 8 and 9 show the case in which the Main

Combustion Chamber pressure sensor Pc starts failing
at T = 8.0. The rate of failure is -300 PSI per second
off the actual value. Figure 8 shows the outputs of the
network which clearly indicate high confidence on all
other sensors while singling out the Pc sensor failure.
Figure 9 indicates that the confidence level of the

measurement falls quickly from high (close to 1) to low
(close to 0) when the measured value moves away from
the real value. The on-line estimation of Pc using the
second network is also shown in Figure 9. The
estimated value of Pc closely follows the actual value
and can be used for backup when the Pc sensor fails.
This arrangement provides an uninterrupted and
undegraded control after the sensor failure.

CONCLUSIONS
Neural networks are proposed to detect sensor

failures and recover the lost measurements from a
group of redundant sensors. A two step approach is
employed. The first network is trained to detect the
sensor which is inconsistent with other sensor readings.
The second network is trained to recover the sensor
readings which are critical in operation. This approach
is especially useful when the relationship among these
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Figure 5. Error vs. Training Iterations
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Figure 6. Sf2 Sensor Degraded at T = 7.0 Seconds
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sensors can not be clearly identified or is too complex
for a Kalman Filter estimator. The network can be
trained using the experimental data for the selected
condition. The dynamic relationship among the sensors
is learned using the back-propagation algorithm.

The proposed approach is applied to the Space

Shuttle Main Engine inflight sensor group through the
Digital Transient Model Simulation. The results clearly
show the adequacy of the approach under the tested
condition. It is conceivable that the approach can be
extended to cover other operating conditions if the
sensor data for those conditions are collected and
applied to training.

The high speed capability of neural networks makes
the proposed approach even more attractive in the real-
time control problem [6]. It was shown in this study
that the sensor measurements used for control purposes
can be easily recovered without delay. This feature is
especially useful in the design of an Intelligent
Controller where real-time diagnostics and
accommodation is one of the key issues.
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